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SUMMARY

The effects of pulsatile amplitude on sinusoidal laminar flows through a rigid pipe with sharp-edged ring-type
constrictions have been studied numerically. The parameters considered are: mean Reynolds number (Re) of the
order of 100; Strouhal number (St) in the range 0�0–3�98; Womersley number (Nw) in the range 0�0–50�0. The
pulsatile amplitude (A) varies in the range 0�0–2�0. The flow characteristics were studied through the pulsatile
contours of streamline, vorticity, shear stress and isobars. Within a pulsatile cycle the relations between
instantaneous flow rate (Q) and instantaneous pressure gradient (dp=dz) are observed to be elliptic. The relations
between instantaneous flow rate (Q) and pressure loss (Ploss) are quadratic. Linear relations exist between
instantaneous flow rate (Q) and maximum velocity, maximum vorticity and maximum shear stress.
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1. INTRODUCTION

In recent years, pulsatile flows have attracted much attention owing to their increasing relevance in
many engineering and biomedical applications. Unsteady flow through constrictions is of interest to
the designer of unsteady flow meters.1 The relationship between flow rate and pressure loss across
various types of constrictions provides a means of estimating the mean flow rate from the measured
pressure loss. The principle of unsteady flow has also been frequently applied to heat transfer devices,
since heat transfer can be enhanced by the onset of flow instability.2 In studies of intracardiac flow
and stenosis in blood vessels, the pressure loss, maximum flow velocity, shear stress and recirculation
region are parameters of extreme interest because of their relationship with the atheroma caused by
the large pressure drop across the constriction created through artificial implants, the corpuscle
damage due to large shear stress and the thrombus phenomena resulting from the recirculation
region.3–9 In the above studies, parameters of special interest are the pulsatile frequency (St or Nw)
and the pulsatile amplitude (A).1–4 However, most of the above studies are on ‘smooth’ sinusoidal
profiles of bell-shaped constrictions. Few have considered constrictions with sharp edges. Hence an
investigation is carried out here to study the effect of amplitude (A) variation on unsteady flows
through sharp-edged constrictions.

The pulsatile laminar flow in a rigid pipe with a sharp-edged ring-type constriction is used here as a
model for studying the application of fluid device implants in intracardiac flow, unsteady flow meters
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and unsteady flow heat exchangers. Sinusoidal pulsatile flow is the most common type of unsteady
flow approximated in most engineering applications. Hence the sinusoidal flow in a rigid pipe with a
ring-type constriction is selected as the physical model in the present numerical study.

The objectives of the present work are to investigate the effects of sinusoidal pulsatile amplitude
on the developing flow characteristics in a pipe with ring-type constrictions (Figure 1(a)). The effects
of pulsatile frequency will also be considered. The investigation will focus on the variation in the
pressure gradient along the axial direction, the pressure loss in the flow passing through the
constriction, the maximum flow velocity, the maximum vorticity, the maximum shear stress, the
recirculation length and the centreline velocity profiles in the developing flow. The results for the
ring-type constrictions presented here are limited tod=D � 0�5 in opening ratio andh=D � 0�1 in
thickness ratio. The mean flow Reynolds number is of the order of 100. The flow Strouhal numbers
(St) considered are in the range 0�0–3�98, with the corresponding Womersley numbers (Nw) in the
range 0�0–50�0. The pulsatile amplitude (A) varies from 0�0 to 2�0.

2. GROWING EQUATIONS AND NUMERICAL PROCEDURES

The governing equations for axisymmetric unsteady incompressible laminar flow through the
constriction shown in Figure 1(a) are given by: continuity equation,
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Figure 1. Flow in rigid pipe with sharp edged ring-type constriction
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z-direction momentum equation,
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r-direction momentum equation;
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In the solution domain shown in Figure 1(a) the upstream inlet velocity conditions are described by

u�r; t� � 2�u�t��1 ÿ �2r=D�

2
�; v�r; t� � 0�0: �4�

The bulk inlet velocity�u�t� is specified as

�u�t� � 1 � A sin�2pt=T�; �5�

whereA is the pulsatile amplitude. Equation (5) is plotted inFigure 2for different A-values.
At each time step along the solid wall the no-slip velocity condition is specified byu � 0 and

v � 0. Along the central line, axisymmetric conditions are applied to all variables, with
@u=@r � 0; v � 0 and@p=@r � 0. At the downstream exit section the dimensionless pressure is fixed
at zero and the flow is considered to be fully developed, sop � 0�0; @u=@z � 0 and@v=@z � 0.

In a general curvature co-ordinate system (x; Z), equations (1)–(3) can be expressed as
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where

x � x�z; r�; Z � Z�z; r�: �7�

The variablesG;E;M;F;N and S in (6) are functions of the physical variables (u; v; p) and the
geometrical variables (z; r). They are expressed in detail by Jones and Bajura1 and Marceloet al.10

and will not be repeated here.
The curvilinear velocity componentsU and V in (6) are related to the Cartesian velocity

componentsu andv in (1)–(3) by

U � uxz � vxr; V � uZz � vZr: �8�

Figure 2. Sinusoidal flow with different amplitudes
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The time-dependent term in (4) can be expressed as3,4

G �

1
2p

Nw2

Re
Jr�0; u; v�T �9�

and the Womersley numberNw is then considered as a characteristic non-dimensional parameter of
unsteady flow. The relation between the Strouhal numberSt and the Womersley number is
Nw �

p

�2pRe St�.
Equation (6) is then solved by an iterative process. All the physical variables (u; v; p) are updated

through

f
n�1

� f
n
� df; �10�

wheren andn � 1 are the previous and current iteration numbers respectively andf represents any of
the physical variables. Substituting equation (10) into (6), the governing equations can be expressed
in incremental form as
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The residual vectorR is calculated using the value of the variable at leveln as
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Equations (11) are solved by the SIMPLE algorithm11 on a non-staggered grid. The grid point
distribution within the solution domain is shown in Figure 1(b). A stretching function is used along
the axial direction,
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�; �12a�

with the boundary conditions given by

zjx�0 � 0; zjx�1 � zm; �12b�

wherezm is the maximum length of the solution domain in the axial direction anda andg are two grid
control parameters. At pointx � x1 the grid size isDz � zmaDx, which can be controlled through the
value ofa. If a < 1�0, the grid will become more clustered at pointx � x1. The grid distribution in
the z-direction can be further refined through the parameterg.

With the grid distribution as defined by (12), all terms containing the incremental variables
(dE; dM; dF; dN ; dS) are discretized by three-point difference schemes. Hybrid difference schemes
are used for convective terms, second-order central schemes for diffusive terms, first-order forward
schemes for pressure terms and first-order backward schemes of the continuity equation. The residual
vector is calculated by second-order difference schemes: second-order upwind schemes for
convective terms, second-order central schemes for diffusive terms, second-order forward schemes
for pressure terms and second-order backward schemes for the continuity equation. At convergence
the residual vectorR is equal to zero and the convergent results have second-order accuracy. For
points adjacent to the wall the corresponding second-order difference schemes are also used to ensure
consistency of the scheme accuracy.

For the time-dependent terms a modified Crank–Nicolson scheme is used to discretize the
governing equations,

dGn�1
ÿ dGn

Dt
� yX n�1

� �1 ÿ y�Xn � ÿR; �13�
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where

X �

@

@x
�dE ÿ dM� �

@

@Z
�dF ÿ dN � ÿ dS

andy is a scheme control parameter ranging from 0�0 to 1�0; y� 0�0 is for the time-explicit scheme,
y� 1�0 is for the time implicit scheme andy� 0�5 is for the standard Crank–Nicolson scheme. The
optimumy-value in the present numerical computation is determined from numerical experiments to
obtain stable and convergent results. In the present work,y� 0�6 is chosen.

Second-order discretizations of the pressure gradient terms and the continuity equation are adjusted
according to the instantaneous main flow direction. This numerical scheme was found to be the most
accurate and numerically stable for the pulsatile flow problems studied here.

The numerical procedure for the pulsatile flow computation adopted in this study can be briefly
outlined as follows.

1. The steady flow is computed and taken as initial condition for the unsteady flow computation.
At the advancement of each time step the initial velocity and pressure fields are given by the
converged values of the previous time step and the boundary values of each variable are
specified.

2. The momentum equations are solved by sweeping in the positive and negativer-direction with
an underrelaxation procedure. The underrelaxation factor is 0�35. The residual of each equation
is computed. Iteration is continued until the residuals of all the equations reduce to 0�1% of their
values at the first iteration.

3. The residual of the continuity equation is computed and used as the source term of the pressure
correction equation, which is then solved by ADI sweeps. The sweep is repeated until the
residual of the pressure correction equation reduces to 0�1% of its value at the first iteration.

4. The flow flux at each section in thez-direction is computed. The maximum equation residual
and maximum flux difference from that at the inlet section are obtained. The programme will
return to step 2 when the maximum residual or maximum flux difference is greater than 0�1% of
the initial value.

5. At convergence the streamline, vorticity and shear stress fields are computed from the velocity
field. Information about the pressure is obtained from the pressure field.

3. RESULTS AND DISCUSSION

For the computation of the flow field in a pipe with a ring-type constriction, non-uniform grids were
used in the axialz-direction, with more grid points being distributed nearer the constriction as shown
in Figure 1(b). For the radial direction and the time domain, computational grids were evenly
distributed. Grids with 15, 21 and 31 points in ther-direction and 81, 101, 121 and 141 points in thez-
direction were tested. Grids with 31, 41 and 51 points per pulsatile period (T) in the time domain were
tested for the first three time periods to check on the grid point independency of the numerical results
obtained. Further computations are then based on a grid point arrangement of 21, 121 and 41 in ther-,
z- andt-direction respectively. Computations were carried out for more than one periodic time cycle
for every pulsatile unsteady flow condition considered.

The validity of the numerical procedure and grid size was first checked against available data for
steady laminar flow in a sudden expansion pipe. Test results are compared with similar data from
Reference 12 and 13 for the recirculation length and the wall shear stress inFigure 3. The results
indicate that the present numerical procedure and grid size produce accurate results when compared
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with known steady laminar flow data. It is thus assumed that a similar procedure and grid size should
also produce accurate results for the unsteady laminar flow cases to be considered here.

Sinusoidal flows with dimensionless amplitudeA varying from 0�0 to 2�0 were computed for
different Strouhal numbers and Womersley numbers.Figure 4displays typical characteristics of the
development of a sinusoidal flow field (St� 0�04, A� 1�0) with respect to timet=T in a pipe with a
ring-type constriction. It shows the developments of the streamline field, the vorticity field and the
distributions of shear stress and isobars. It should be noted here that ast=T advances from 0�0 to 1=4,
the forward flow is accelerated to the peak flow velocity. The recirculation lengthzr=D increases from
its steady flow value to a maximum value. Ast=T further advances from 1=4 to 3=4, the forward flow
is decelerated back towards its minimum value andzr=D decreases to its minimum value
correspondingly. During the period oft=T from 3=4 to 1�0, when the flow velocity is accelerated back
to its maximum value again,zr=D increases from its minimum value back to its maximum value.
When t=T further advances from 1�0 to 6=4, the second cycle starts and the flow follows a repeated
pattern. The changes in recirculation length are presented inFigure 5for different values of amplitude
(A� 0�25–1�0). The results show that the recirculation region in the unsteady flow domain is not
stationary. For the duration where the instantaneous bulk velocity of the flow field is very small, the

Figure 3. Comparison of results on steady flow in pipe with sudden expansion
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recirculation region in the flow domain is negligible. For the sinusoidal flow investigated, flow
acceleration and deceleration are of the same magnitude at the same instantaneous flow rateQ.
However, as shown in Figure 4 through the development of the streamlines and in Figure 5 through
the development of the recirculation length, it is noted that during the deceleration phases the flow
field results in a larger recirculation region.

The centreline velocity is also an important flow characteristic in the study of unsteady flow field
development. As seen inFigure 6for A� 0�5 and 1�0, the centerline velocity distribution along the
axial direction shows a similar periodic change to the unsteady flow field. The time levels (t) are
given on each figure. The time step used isDt � 1=40. From the study of other figures in Figure 6, for
A� 1�0 the flow is nearly stationary at time levels 30 and 32. With the bulk velocity approaching
zero, the recirculation length also approaches zero.

Typical relations between instantaneous flow rateQ and instantaneous pressure gradient dp=dz
along the axial direction in the fully developed flow region atz=D� 16 are shown inFigure 7. The
dp=dzQ instantaneous values show an elliptic relation.

From the above the time-averaged pressure gradientdp/dz is obtained from

dp=dz �

�1�5

0�5
�dp=dz�dt: �14�

Typical trends and results are presented inFigure 8. As the amplitudeA increases, the magnitude of
dp=dz decreases and approaches a stationary value. The dimensional time-averaged pressure gradient
can be obtained from

dp=dz* � �dp=dz��Rem�2=rD3
: �15�

Relations between instantaneous flow rateQ and pressure lossPloss across the constriction are
presented inFigure 9 for different dimensionless amplitudes. The empirical relationship obtained
through the numerical experiments can be expressed as

Ploss � CplossQjQj �16�

whereCploss� 15�0 for St� 0.04 andCploss� 14�8 for St� 0�16.
Variations in time-averaged pressure�Ploss with respect to pulsatile amplitude are shown inFigure

10. �Ploss is seen to increase with the pulsatile amplitude. However, the difference between the
characteristic trends for Strouhal numbers of 0�04 and 0�16 is negligible.

Figure 5. Relation between flow rate and recirculation length
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Figure 6. Centreline velocity development of sinusoidal flows
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Figure 7. Relation between flow rate and axial pressure gradient

Figure 8. Effect of pulsatile amplitude on time-averaged axial pressure gradient

Figure 9. Relation between flow rate and pressure loss

Figure 10. Effect of pulsatile amplitude on time-averaged pressure loss
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Other parametric relations of laminar sinusoidal flow fields that can be obtained through the
present study include linear relations between flow rate and non-dimensional maximum values of
overall flow velocity, vorticity and shear stress. These are expressed as

umax � 6�88Q�t�; Omax � 162�26Q�t�; tmax � 1�05Q�t� �17�

and illustrated inFigures 11–13for St� 0�04 and 0�16. As expected, the maximum flow velocity is
always located on the centerline of the pipe (Figure 11). The corresponding maximum wall vorticity
and shear stress are presented inFigures 14 and 15. For St� 0�04, linear relations betweenQ(t) and
bothOw;max andtw;max are given by

Ow;max � 16�09Q�t�; tw;max � 0�189Q�t�: �18�

The maximum wall vorticity and shear stress are of the order of 1=10 and 1=5 of their overall
maximum field values respectively (Figures 12–15). In related biofluid dynamic investigations, such
as intracardiac flow and valvular regurgitant flow studies, information on the velocity field is obtained
from the Doppler echo cardiography technique.14

4. CONCLUSIONS

The effects of pulsatile amplitude on the flow fields through a sharp-edged ring-type constriction
were investigated forA in the range 0�0–2�0, Nw from 0�0 to 50�0 andSt from 0�0 to 3�98. Numerical
experiments show that flow deceleration in the pulsatile cycles tends to enlarge the recirculation
region and this effect becomes more significant with an increase in pulsatile amplitude (or
corresponding increase in Womersley and Strouhal numbers). The corresponding flow acceleration in
the pulsatile cycles tends to increase the pressure drop in the pipe flow. Other more specific flow

Figure 11. Relation between flow rate and maximum velocity

Figure 12. Relation between flow rate and maximum vorticity
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characteristics are also observed. The relationship between instantaneous flow rate and pressure loss
across the constriction is quadratic. However, the relationship between instantaneous flow rate and
pressure gradient is elliptic. The time-averaged pressure gradient along the axial direction tends
towards a stationary value when the pulsatile amplitude is increased from 0�0 to 2�0. Other linear
relations exist between flow rate and maximum velocity, maximum vorticity and maximum shear
stress within the pulsatile flow field.

APPENDIX: NOMENCLATURE

a pulsatile amplitude
A dimensionless pulsatile amplitude,a=D
d orifice diameter
D pipe diameter (characteristic length)
h constriction thickness
Nw Womersley number,D

p

�o=n�

Figure 15. Relation between flow rate and maximum wall shear stress

Figure 13. Relation between flow rate and maximum shear stress

Figure 14. Relation between flow rate and maximum wall vorticity
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p pressure
dp=dz pressure gradient in axial direction
dp=dz time-averaged pressure gradient,�1=T�

� t�T
t �dp=dz�dt

Ploss pressure loss across constriction, pressure different between upstream and downstream flow
�Ploss time-averaged pressure loss,�1=T�

� t�T
t Plossdt

Q flow rate,Q�t� � �p=4�D2ÿu�t�
Qmax maximum flow rate, 1�0
r radial co-ordinate, radial distance
Re Reynolds number,�upeakD=n

St Strouhal number,D=�upeakT or �1=2p�Nw2
=Re

t time co-ordinate, time-step
T time period of physiological flow
Ts time period of sinusoidal flow
u axial velocity component
�u�t� instantaneous bulk velocity in pipe
�upeak peak �u�t�-value (characteristics velocity)
v radial velocity component
z axial co-ordinate, axial distance
zr recirculation length

Greek letters

ap underrelaxation factor in updating pressure
x,Z co-ordinate variables in general curvature co-ordiante system
n fluid molecular kinetic viscosity
r density of fluid
t shear stress,�1=Re��@u=@r� � �@v=@z�
O vorticity, @u=@r ÿ @v=@z
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